MYO3β, Active Recombinant human protein expressed in Sf9 cells Catalog # M66-11G-10 Lot # C055-2 ## **Product Description** Recombinant human MYO3 β (1-326) was expressed by baculovirus in Sf9 insect cells using an N-terminal GST tag. The gene accession number is NM 138995. #### Gene Aliases Myosin IIIB #### Concentration 0.1 μg/μl #### **Formulation** Recombinant protein stored in 50mM Tris-HCI, pH 7.5, 150mM NaCl, 0.25mM DTT, 0.1mM EGTA, 0.1mM EDTA, 0.1mM PMSF, 25% glycerol. ### Storage, Shipping and Stability Store product at -70°C. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles. Stability is 1yr at -70°C from date of shipment. Product shipped on dry ice. # **Scientific Background** MYO3 β is a member of the Class III myosins that are actin-dependent motor proteins containing an amino-terminal kinase domain. MYO3 β contains an N-terminal kinase domain, followed by motor, neck, and tail domains. The MYO3 β gene generates a variety of splice variants that contain 1 or 2 calmodulin-binding (IQ) motifs in the neck domain and 1 of 3 domains in the tail domain. Northern blot analysis shows expression of a 7-kb MYO3 β transcript in the human retina but not in a RPE cell line (1). The MYO3 β gene transcript is also detected in the kidney, intestine and testis. The MYO3 β gene maps to chromosome 2q31.1-q31.2 by genomic sequence alignment. #### References Dose, A C. et al: A class III myosin expressed in the retina is a potential candidate for Bardet-Biedl syndrome. Genomics 79: 621-624, 2002. ## **Purity** Figure 1. SDS-PAGE gel image The purity of MYO3 β was determined to be >90% by densitometry, approx. MW 63kDa. # **Specific Activity** Figure 2. Radiometric Assay Data The specific activity of MYO3β was determined to be **85 nmol** /min/mg as per activity assay protocol. (For Radiometric Assay Protocol on this product please see pg. 2) Figure 3. ADP-Glo™ Assay Data The specific activity of MYO3β was determined to be 100 nmol /min/mg as per activity assay protocol. (For ADP-GloTM Assay Protocol on this product please see pg. 3) # **Activity Assay Protocol** #### **Reaction Components** # Active Kinase (Catalog #: M66-11G) Active MYO3 β (0.1 μ g/ μ l) diluted with Kinase Dilution Buffer III (Catalog #: K23-09) and assayed as outlined in sample activity plot. (Note: these are suggested working dilutions and it is recommended that the researcher perform a serial dilution of Active MYO3 β for optimal results). #### Kinase Dilution Buffer III (Catalog #: K23-09) Kinase Assay Buffer I (Catalog #: K01-09) diluted at a 1:4 ratio (5X dilution) with final $50ng/\mu l$ BSA solution. ## Kinase Assay Buffer I (Catalog #: K01-09) Buffer components: 25mM MOPS, pH 7. 2, 12.5mM β -glycerol-phosphate, 25mM MgCl $_2$, 5mM EGTA, 2mM EDTA. Add 0.25mM DTT to Kinase Assay Buffer prior to use. ## [33P]-ATP Assay Cocktail Prepare 250 μ M [33P]-ATP Assay Cocktail in a designated radioactive working area by adding the following components: 150 μ l of 10mM ATP Stock Solution (Catalog #: A50-09), 100 μ l [33P]-ATP (1mCi/100 μ l), 5.75ml of Kinase Assay Buffer I (Catalog #: K01-09). Store 1ml aliquots at -20°C. #### **10mM ATP Stock Solution, pH7.2** (Catalog #: A50-09) Prepare ATP stock solution by dissolving 55mg of ATP in 10ml of Kinase Assay Buffer I (Catalog #: K01-09). Store 200 μ l aliquots at -20° C. ## Substrate (Catalog #: M42-54G) Myelin basic protein (MBP) diluted in distilled H_2O to a final concentration of $1\,\text{mg/ml}$. ### **Assay Protocol** - Step 1. Thaw [33P]-ATP Assay Cocktail in shielded container in a designated radioactive working area. - Step 2. Thaw the Active MYO3\(\beta\), Kinase Assay Buffer, Substrate and Kinase Dilution Buffer on ice. - Step 3. In a pre-cooled microfuge tube, add the following reaction components bringing the initial reaction volume up to 20ul: Component 1. 10μl of diluted Active MYO3β (Catalog #M66-11G) Component 2. 5µl of 0.2mg/ml stock solution of substrate (Catalog #M42-54G) Component 3. 5µl distilled H₂O (4°C) - **Step 4.** Set up the blank control as outlined in step 3, excluding the addition of the substrate. Replace the substrate with an equal volume of distilled H₂O. - Step 5. Initiate the reaction by the addition of 5μ [33P]-ATP Assay Cocktail bringing the final volume up to 25μ l and incubate the mixture in a water bath at 30°C for 15 minutes. - Step 6. After the 15 minute incubation period, terminate the reaction by spotting 20µl of the reaction mixture onto individual pre-cut strips of phosphocellulose P81 paper. - **Step 7.** Air dry the pre-cut P81 strip and sequentially wash in a 1% phosphoric acid solution (dilute 10ml of phosphoric acid and make a 1L solution with distilled H₂O) with constant gentle stirring. It is recommended that the strips be washed a total of 3 intervals for approximately 10 minutes each. - Step 8. Count the radioactivity (cpm) on the P81 paper in the presence of scintillation fluid in a scintillation counter. - **Step 9.** Determine the corrected cpm by removing the blank control value (see Step 4) for each sample and calculate the kinase specific activity as outlined below. #### Calculation of [P³³]-ATP Specific Activity (SA) (cpm/pmol) Specific activity (SA) = cpm for 5 µl [33P]-ATP / pmoles of ATP (in 5 µl of a 250 µM ATP stock solution, i.e., 1250 pmoles) # Kinase Specific Activity (SA) (pmol/min/μg or nmol/min/mg) Corrected cpm from reaction / [(SA of 33 P-ATP in cpm/pmol)*(Reaction time in min)*(Enzyme amount in μg or mg)]*[(Reaction Volume)] # ADP-Glo™ Activity Assay Protocol #### **Reaction Components** MYO3β Kinase Enzyme System (Promega, Catalog #:V4074) MYO3β, Active, 10μg (0.1μg/μl) MBP Protein, 1ml (1mg/ml) Reaction Buffer A (5X), 1.5ml DTT (0.1M), 25μl ADP-Glo™ Kinase Assay Kit (Promega, Catalog #: V9101) Ultra Pure ATP, 10 mM (0.5ml) ADP, 10 mM (0.5ml) ADP-Glo™ Reagent (5ml) Kinase Detection Buffer (10ml) Kinase Detection Substrate (Lyophilized) ### Reaction Buffer A (5X) 200mM Tris-HCl, pH 7. 5, 100mM MgCl₂ and 0.5 mg/ml BSA. #### **Assay Protocol** The MYO3β assay is performed using the MYO3β Kinase Enzyme System (Promega; Catalog #: V4074) and ADP-Glo[™] Kinase Assay kit (Promega; Catalog #: V9101). The MYO3β reaction utilizes ATP and generates ADP. Then the ADP-Glo[™] Reagent is added to simultaneously terminate the kinase reaction and deplete the remaining ATP. Finally, the Kinase Detection Reagent is added to convert ADP to ATP and the newly synthesized ATP is converted to light using the luciferase/luciferin reaction. For more detailed protocol regarding the ADP-Glo[™] Kinase Assay, see the technical Manual #TM313, available at www.promega.com/tbs/tm313/tm313.html. - Step 1. Thaw the ADP-Glo™ Reagents at ambient temperature. Then prepare Kinase Detection Reagent by mixing Kinase Detection Buffer with the Lyophilized Kinase Detection Substrate. Set aside. - Step 2. Thaw the components of MYO3ß Enzyme System, ADP and ATP on ice. - Step 3. Prepare 1ml of 2X Buffer by combining 400µl Reaction Buffer A, 1µl DTT and 599µl of dH₂0. - Step 4. Prepare 1ml of 250μM ATP Assay Solution by adding 25μl ATP solution (10mM) to 500μl of 2X Buffer and 475μl of dH₂0 - Step 5. Prepare diluted MYO3β in 1X Buffer (diluted from 2X buffer) as outlined in sample activity plot. (Note: these are suggested working dilutions and it is recommended that the researcher perform a serial dilution of Active MYO3β for optimal results). - **Step 6.** In a white 96-well plate (Corning Cat # 3912), add the following reaction components bringing the initial reaction volume up to 20µl: Component 1. 10µl of diluted Active MYO3B Component 2. 5µl of 1mg/ml stock solution of substrate Component 3. 5µl of 2X Buffer - Step 7. Set up the blank control as outlined in step 6, excluding the addition of the substrate. Replace the substrate with an equal volume of distilled H₂O. - Step 8. At the same time as the MYO3β kinase reaction, set up an ATP to ADP conversion curve at 50μM ATP/ADP range as described in the ADP-GloTM Kinase Assay technical Manual #TM313. - Step 9. Initiate the MYO3 β reactions by the addition of 5μ l of 250 μ M ATP Assay Solution thereby bringing the final volume up to 25μ l. Shake the plate and incubate the reaction mixture at 30°C for 15 minutes. - Step 10. Terminate the reaction and deplete the remaining ATP by adding 25µl of ADP-Glo™ Reagent. Shake the 96-well plate and then incubate the reaction mixture for another 40 minute at ambient temperature. - Step 11. Add 50µl of the Kinase Detection Reagent, shake the plate and then incubate the reaction mixture for another 30 minute at ambient temperature. - Step 12. Read the 96-well reaction plate using the Kinase-Glo™ Luminescence Protocol on a GloMax® Microplate Luminometer (Promega; Cat # E6501). - Step 13. Using the conversion curve, determine the amount of ADP produced (nmol) in the presence (step 6) and absence of substrate (Step 7) and calculate the kinase specific activity as outlined below. For a detailed protocol of how to determine nmols from RLUs, see Kinase Enzyme Systems Protocol at: http://www.promega.com/KESProtocol ## Kinase Specific Activity (SA) (nmol/min/mg) (ADP (step 6) - ADP (step 7)) in nmol) / (Reaction time in min)*(Enzyme amount in ma)